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Proceedings of Symposium on Polymers with Unusual Properties

A New Approach to Polymer Chemistry:

Organometallic and Bioactive Phosphazenes

Harry R. Allcock

Department of Chemistry, The Pennsylvania State University,
University Park, Pennsylvania 16802

Abstract: Polyphosphazenes are prepared by a substitutive process that

involves nucleophilic displacement reactions on poly(dihalophosphazenes).

A variety of strategies are described for the utilization of this approach

for the preparation of polymeric drugs and polymer-bound transition metal

systems.

Future Challenges in Polymer Synthesis

The main challenge in polymer synthesis during the past forty years

has been the preparation of new materials with ever more sophisticated solid

state properties. By this is meant the utilization of polymers for their

solid state chain entanglement or chain packing attributes. This underlies

the practical reasons for the use of polymers in fibers, films, elastomers,

and as structural materials. Much remains to be done in this area,

especially with respect to high strength, heat stable materials, or polymers

with special surface properties. The synthesis of solid polymers that

can conduct electricity has also received wide attention.
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However, in recent years, it has become generally recognized that

the solution properties of polymers and the detailed molecular arrangement

of side groups along an isolated macromolecular chain hold important keys

to the future development of polymer science. Prominent among the

areas being investigated are the use of polymers as carrier molecules for

bioactive agents (drugs, metalloporphyrins, enzymes, etc.), and as

"immobilization carriers" for transition metal catalyst systems. The

distant prospect that synthetic polymers may be prepared with precisely

sequenced arrangements of different side groups for use as self-assembling

structures, templates for the synthesis of complementary macromolecules,

or even for information storage at the molecular level, remains an intriguing

prospect.

In many cases the roadblock to achieving these breakthroughs lies in

the limitations of presently available synthetic methods.

Substitution Reactions on High Polymers

Most modern synthetic macromolecules are synthesized by the polymerization

of organic monomers, with the use of the well-known addition-, condensation-,

or ring-opening-polymerization methods. However, there exists an

alternative approach to polymer synthesis which involves the substitutive

transformation of preformed high polymers. In this method reactive side

groups attached to a polymer chain are replaced by other groups with an

attendant change in the physical and chemical properties of the macro-

molecule.
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This method is intuitively appealing because it avoids the usual

problems involved in chain-building from new monomers or the need to

search for appropriate polymerization initiators or reaction conditions.

Once the backbone has been constructed the task of new polymer synthesis

simplifies to a study of substitution reactions. In addition, the use

of neighboring group polar effects, stetic and electronic effects, and

sequential substitution processes offers the prospect that quite sophisticated

macromolecular structures might be constructed by this approach.

A number of well-known polymers are, in fact, prepared by this techique.

The hydrolysis of poly(vinyl acetate) to poly(vinyl alcohol) or the nitration

or acetylation of cellulose are obvious examples. Yet, given the enormous

opportunities of modern substitutive chemistry, this approach accounts for

only a trivial fraction of the polymer syntheses employed today. It is

worthwhile to ask why.

Substitution reactions carried out on small molecules can generally

be accomplished with ease because the overall efficiency of substitution

is only a secondary consideration. If 75% of the small molecules in a

reaction mixture are transformed, the remaining 25% are discarded or recovered,

and the yield of product is acceptable. But if only 75% of the side groups

along a polymer chain can be replaced by other groups, the yield of the

fully substituted product is zero. Thus, different considerations govern

chemistry carried out on large, linear molecules from those with which most

chemists are familiar. High reactivity of the polymeric substrate is the

key to polymer synthesis by the macroolecular substitution route.
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Moreover, it is essential that substitution reactions carried out on

high polymers should be free from side reactions that may result in main

chain cleavage or crosslinking. A crosslinked, partly-substituted polymer

would be an unsatisfactory substrate for replacement of the remaining

side groups.

Poly(dihalophosphazenes) as Reaction Substrates

Very few organic macromolecules have the necessary high reactivity to

function as substrates for efficient substitution reactions. It was

recognized a number of years ago1 - 3 that such reactivity might be found

among certain inorganic macromolecules, especially those based on the

halophosphazene structures 1 and 2.

I I )

I2 (n a 15,000
)M a V106 )

noush evidence exists about the reactivities of smell molecules, such

as PCi 3 , PCi 5 , or small-solecule analogues of I or Z, such as the cyclic

(SPC12 ) 3 (3), (MPd 2 )4 (4), or (NP'2)3 (5), to suggest that the phosphorus-

halogen bond Is highly reactive toward cleavage by organic nucleophiles.

t -{
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Our initial problem was to develop methods for the synthesis of

uncrosslinked forms of 1 and 2.1,2,4 It was then possible to demonstrate

that 1 and 2 are reactive substrates for reactions with organic nucleo-

philes.1-4  Under suitable conditions all the halogen atoms can be replaced.
1 -9

This approach is summarized in Scheme I.
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It should be noted that a close correspondence exists between the

reactions of polymers such as 1 and 2, and cyclic oligomers such as 3-5.10

Hence, the oligomers can be used as models for exploratory reactions that are

later applied to the high polymers.

A serious challenge at present is to extend the reactions shown in

Scheme I to those in which poly(dihalophosphazenes) react with Grignard-,

organolithium-, or organocopper reagents as the route to the synthesis of

polyphosphazenes with alkyl- or aryl groups linked directly to phosphorus.

Bioactive Polyphosphazenes

It is widely believed that the effectiveness of chemotherapeutic drugs

can be improved by targeting them to specific sites in the body and by providing

for a controlled release of the drug to maintain optimum concentration. In

principle, this can be achieved by the attachment of chemotherapeutic agents

to polymer molecules. The carrier polymer must meet certain requirements.

First, it should preferably be soluble in aqueous media at pH 7. Second, it

should be degradable to non-toxic small molecules that can be excreted or

metabolized. And third, ideally, it should carry a "homing" unit that

maximizes the concentration of the polymer-drug combine at the site ,'ithin the

organism where chemotherapy is needed.

A few polyphosphazenes have been found to undergo hydrolytic degradation

in aqueous media. These are polymers that bear amino acid ester 1 2 or imidazolyl

side groups. 1 3  Water-soluble polymers that bear glucose side groups have also

been synthesized.
1 4

-. . /
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The following methods have been developed recently for the attachment

of bioactive cosubstituent groups to a polyphosphazene chain:

(1) Steroidal side groups can be attached by reaction of an alkali

metal 3-steroidoxide with poly(dichlorophosphazene).15 Unreacted chlorine

atoms are then removed by treatment with an amino acid ester or amine. A

typical structure is illustrated in 9.

(2) Bioactive amines react directly with poly(dichlorophosphazene).
16

Typical amines include procaine, benzocaine, and chloroprocaine. These are

anesthetic or antirrhythmic agents. Structure 10 is illustrative of this mode

of linkage.

(3) Biologically active amines have also been linked to aryloxyphosphazenes

by Schiff's base formation through a pendent aldehydic group. Drugs such as

sulfadiazine have been coupled in this way (11).
1 7

(4) An active carboxylic acid, such as nicotinic acid or N-acetyl-

penicillamine, can be linked to an aminomethylene-aryloxyphosphazene by DCC-

induced peptide coupling techniques to give structures such as 12.18

(5) Finally, the anticoagulent, heparin, has been coupled to a
19

quaternized aryloxyphosphazene, as shown in 13.

X

22

0 ~ NH- "0
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Orsanoimetallic Phosphazenes

Polymer-bound transition metal system are of interest as catalyst

system and possibly as electroactive materials. We are currently developing

methods by which transition metal organomtallic groups can be linked to a

polyphosphazene chain. Methods xplored to date include the following:

(1) The backbone nitrogen atoms of polyphosphazenes are quite basic

provided that electron-supplying side groups are attached to each skeletal

phosphorus atom. Such polymers bond metals strongly by coordination of the

skeletal nitrogen atoms to the matal.20

(2) Aryloxyphosp .mane b' - polymers that bear phosphine units on the

aromatic rings coordinate to A*Cl, 92 0s 3 (CO) 1 0 , Mn(CO)2(CjR5), RhCI(CO), and

Fe(CO)3 umits. Di-coordinative crosslinking can take place with the rhodium

and iron systems. 2 1

I -#
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(3) Pendent acetylenic units attached to a phosphazene skeleton form

w-bonding sites for organometallic units such as Co2 (C0) 6 . 2 2

(4) Pendent nido-carboranyl groups bind to transition metal units

such as Rh(Ph 3 ) 2 H groups to form polymer-bound catalytic systems. The

organometallic unit retains its activity as an olefin hydrogenation catalyst. 2 3

(5) Finally, halophosphazenes react with organometallic anions to yield

species with direct phosphorus-metal bonds.2 4  This work is currently at the

model compound level and is being extended to the high polymers.

These structures are illustrated in 14-18.

S_- Co (CO) 3

"/ / " O-Q)- h.
S N N PN P- Co(CO)3

Pt 0Th R

Cl Cl

14 15 16

-Imp-
N P P

R F
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